- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Brandt, Richard E. (1)
-
Casanova, Henri (1)
-
Deelman, Ewa (1)
-
Filgueira, Rosa (1)
-
Gesing, Sandra (1)
-
Hildreth, Michael (1)
-
Hudson, Stephen (1)
-
Hudson, Stephen R. (1)
-
Koch, William (1)
-
Larson, Jeffrey (1)
-
McDowell, Mary Ann (1)
-
Meyers, Natalie (1)
-
Navarro, John-Luke (1)
-
Neshyba, Steven (1)
-
Papadimitriou, George (1)
-
Rowe, Penny M. (1)
-
Tanaka, Ryan (1)
-
Taylor, Ian (1)
-
Thain, Douglas (1)
-
Town, Michael S. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rowe, Penny M.; Walden, Von P.; Brandt, Richard E.; Town, Michael S.; Hudson, Stephen R.; Neshyba, Steven (, Journal of Geophysical Research: Atmospheres)Abstract Clouds have a large effect on the radiation budget and represent a major source of uncertainty in climate models. Supercooled liquid clouds can exist at temperatures as low as 235 K, and the radiative effect of these clouds depends on the complex refractive index (CRI) of liquid water. Laboratory measurements have demonstrated that the liquid‐water CRI is temperature‐dependent, but corroboration with field measurements is difficult. Here we present measurements of the downwelling infrared radiance and in‐situ measurements of supercooled liquid water in a cloud at temperatures as low as 240 K, made at South Pole Station in 2001. These results demonstrate that including the temperature dependence of the liquid‐water CRI is essential for accurate calculations of radiative transfer through supercooled liquid clouds. Furthermore, we show that when cloud properties are retrieved from infrared radiances (using the spectral range 500–1,200 cm−1) spurious ice may be retrieved if the 300 K CRI is used for cold liquid clouds (∼240 K). These results have implications for radiative transfer in climate models as well as for retrievals of cloud properties from infrared radiance spectra.more » « less
An official website of the United States government
